Student Probe

- Douglas has 6 football cards. His grandmother gave him 7 football cards for his birthday. How many football cards does Douglas have now? Explain how you solved the problem.
- 2. Mom made 14 sandwiches. We ate 8 sandwiches for lunch. How many sandwiches do we have for after school? Explain how you solved the problem.

Teacher Note: Identify the specific strategy that the student describes.

Lesson Description

In this lesson students solve contextual addition problems using an efficient strategy. The strategies in this lesson include: counting all, counting on, doubles plus one, doubles minus one, make ten, Identity Property for Addition (zero).

Rationale

Students need to have a repertoire of strategies to solve addition and subtraction problems. The student's strategy must make sense to the student. Addition problems can be solved using several different strategies. The specific strategy the student uses is not important. Teachers should guide students to use a more efficient strategy rather than continue using a less efficient strategy just because he or she feels comfortable with a strategy.

Preparation

Prepare printed problems for students to view as they solve each problem and/or answer questions.

At a Glance

What: Use of an efficient addition and subtraction strategy Standard: AR.Math.Content.1.OA.C.6 Add and subtract within 20, demonstrating computational fluency for addition and subtraction within 10. Use strategies such as: Counting on Making ten Decomposing a number leading to a ten Using the relationship between addition and subtraction Creating equivalent but easier or known sums Standards for Mathematical Practices: SMP1: Make sense of problems and persevere in solving them. SMP2: Reason abstractly and quantitatively. SMP3: Construct viable arguments and critique the reasoning of others. What: Students who are unable to solve addition and subtraction problems using efficient strategies. Grade Level: 2 Prerequisite Vocabulary: None Prerequisite Skills: None Delivery Format: individual, small group Lesson Length: 15-30 minutes Materials, Resources, Technology: None Student Worksheets: None

Th	e teacher says or does	Expect students to say or	If students do not, then the		
		do	teacher says or does		
1.	Noah had 8 toy cars. His	14 toy cars	If the student cannot		
	mother bought him 6		determine 14, then ask the		
	more toy cars. How	The student explains that	student to represent the		
	many toy cars does Noah	he counted all (1, 2, 3, 4, 5,	problem using counters,		
	have now? Explain how	6, 7, 8) (9, 10, 11, 12, 13,	blocks, etc.		
	you found the number of	14)			
	toy cars Noah has now.	OR	Student builds one group with 8 objects and one group		
		The student explains that			
		he counted on :	with 6 objects. Then, student		
		8,9, 10, 11, 12, 13, 14	"joins" the two groups and		
		OR	counts all of the objects. If		
		The student explains that	the student can determine 14		
		he used doubles :	by representing the problem		
		8 + 6	with objects (including		
		(6 + 2) + 6 → 6 + 6 is 12	fingers) and counting all of		
		→ 12 + 2 is 14	the objects, then guide the		
		OR	student to count on.		
		The student explains that			
		he used makes ten :	Hopefully, at this point, the		
		8+6	student should not need to		
		8+ (2 + 4) → (8+ 2) + 4	represent the problem with		
		→ 10+ 4 is 14	objects or just represent one		
		OR	of the numbers.		
		Basic Fact: 8 + 6 = 14			
			Most students who have		
		Noah has 14 toy cars now	difficulty with this problem		
			will model the problem in the		
			order that it occurs in the		
			problem.		
			Thus, students who use the		
			strategy of counting on, will		
			say 8 then count on 6 more		
			8—9, 10, 11, 12, 13, 14		
			If a student can determine 14		
			by counting on—especially by		
			counting on from the larger		
			number, then guide the		
			student to use doubles.		
			student to use doubles.		

	Defense visions de vibles te celus
	Before using doubles to solve
	this problem, guide the
	student to learn their
	doubles:
	1 + 1 = 2 2 + 2 = 4
	3 + 3 = 6 4 + 4 = 8
	5 + 5 = 10
	Concentrate on just these 5
	addition problems first. Once
	the student is successful with
	these five, then guide the
	student to learn the following
	doubles:
	6+6=12 7+7=14
	8 + 8 = 16 9 = 9 = 18
	10 + 10 = 20
	8 + 6 → (6 + 2) + 6 →
	6 + 6 is 12 12 + 2 is 14
	In this problem the student
	uses knowledge of the sum of
	doubles to solve the problem.
	Once the student is successful
	with the use of doubles to
	solve problems, then guide
	the student to use the
	strategy make ten.
	$8+6 \longrightarrow 8+(2+4) \longrightarrow$
	(8+ 2) + 4 → 10+ 4 is 14
	Teacher Note: Student needs
	to decompose the smaller
	number in order to make ten
	using the larger number.
	6 needs 4 to make 10
	7 needs 3 to make 10
	8 needs 2 to make 10
	9 needs 1 to make 10
L	

The teacher says or does	Expect students to say or do	If students do not, then the teacher says or does
2. Ola baked 8 cookies for the party. Then, she baked 7 more cookies for the party. How many cookies did Ola bake for the party?	do 15 cookies The student explains that he counted all (1, 2, 3, 4, 5, 6, 7, 8) (9, 10, 11, 12, 13, 14, 15) OR The student explains that he counted on: 8,9, 10, 11, 12, 13, 14, 15 OR The student explains that he used doubles and one more: $8 + 7 \longrightarrow (7 + 1) + 7 \longrightarrow$ $7 + 7$ is 14 \longrightarrow 14 + 1 is 15 OR The student explains that he or she used doubles minus one. 8 + 7 $(8 - 1) + 1) + 7 \longrightarrow$ $(7 + 1) + 7 \longrightarrow 7 + 7$ is 14 \longrightarrow 14 + 1 is 15 OR The student explains that he used makes ten: 8 + 7 $8 + (2 + 5) \longrightarrow (8 + 2) + 5$ \longrightarrow 10 + 5 is 15 Ola has 15 cookies now.	teacher says or does The same discussion as for problem 1.

The teacher says or does	Expect students to say or	If students do not, then the		
	do	teacher says or does		
		•		
3. Mary had 6 black beads on	6 beads	If the student cannot		
her necklace and 0 white		determine 6, then ask the		
beads. How many beads	The student explains that he	student to represent the		
does Mary have on her	counted all (1, 2, 3, 4, 5, 6)	problem using counters,		
necklace?		blocks, etc.		
	OR			
		The student builds one group		
	The student explains that he	with 6 objects and one group		
	The student explains that he			
	counted on: 6,	with no objects. Then, the		
		student "joins" the two		
	OR	groups and counts all of the		
		objects.		
	The student explains that any			
	number plus 0 does not			
	change the number;			
	.			
	6 + 0 = 6			
	Mary has 6 beads now.			

The teacher says or does	Expect students to say or	If students do not, then the
	do	teacher says or does
Subtraction Strategies:	7 pieces of gum	
4. Danny had 11 pieces of		
gum. He gave 4 pieces	The student explains that he	
to his friends. How	counted back (11, 10, 9, 8).	
many pieces of gum	Danny has 7 pieces—	
does Danny have now?		
	(10, 9 , 8, 7) Danny has 7	
	pieces of gum—the last	
	number said.	
	The student explains that he	
	or she thought about an	
	addition problem:	
	"What can be added to 4 to	
	obtain a sum of 11?" 7	
	Danny has 7 pieces of gum	
	now.	

Teacher Notes

- 1. In addition to the above strategies, students may also use composition and decomposition of Numbers (refer to <u>Composing and Decomposing Numbers</u>) or applies the inverse relationship (refer to <u>Relationship of Addition and Subtraction</u>).
- 2. Practice with these strategies enables the students to develop basic facts fluency. The following sequence for developing basic fact fluency is suggested:
 - 1. One more
 - 2. Two more
 - 3. Doubles
 - 4. Doubles plus one
 - 5. Doubles minus one
 - 6. Identity Property for Addition

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7					
4	4	5	6	7	8	9				
5	5	6	7		9	10	11			
6	6	7	8			11	12	13		
7	7	8	9				13	14	15	
8	8	9	10					15	16	17
9	9	10	11						17	18

 For the other facts use the strategies: Make 10: <u>Compose and Decompose Numbers Less Than Ten</u> Decompose and Compose Numbers: <u>Composing and Decomposing Numbers</u> Commutative Property for Addition: <u>Commutative Property of Addition</u>

Variations

Addition problems to use with students for guided practice and/or independent practice and formative assessment:

- 1. Carl had 7 marbles. His mother gave him 6 more marbles. How many marbles does Carl have now?
- 2. Brenda has 5 stickers. Her friend gave her 6 more stickers. How many stickers does Brenda have now?
- 3. Bruce had 9 toy cars. His mother bought him 6 more toy cars. How many toy cars does Bruce have now?
- 4. Frankie baked 5 cookies for the party. Then, she baked 6 more cookies for the party. How many cookies did Frankie bake for the party?
- 5. Crystal had 7 white beads on her necklace. She has 0 red beads on her necklace. How many beads does Crystal have on her necklace now?

Subtraction problems to use with students for guided practice and/or independent practice and formative assessment:

- 1. 11 ducks were swimming in the pond. 4 ducks flew away. How many ducks were swimming in the pond now?
- 2. Skylar had 15 pieces of gum. He gave 6 pieces to his friends. How many pieces of gum did Skylar have now?
- 3. The baker made 8 cakes. He sold 3 cakes to his customers. How many cakes did the baker have now?
- 4. 16 birds are sitting in a tree. 7 birds flew away. How many birds are in the tree now?
- 5. James has 13 pennies in his pocket. He used 6 pennies to buy a piece of gum. How many pennies does James have now?

Formative Assessment

- 1. Stephen had 17 marbles. He gave 6 of his marbles to Julie. How many does Stephen have now?
- 2. Julie had 12 marbles. Stephen gave her 6 more. How many marbles does Julie have now?

References

Russell Gersten, P. (n.d.). *RTI and Mathematics IES Practice Guide - Response to Intervention in Mathematics*. Retrieved 2 25, 2011, from rti4sucess:

http://www.rti4success.org/images/stories/webinar/rti_and_mathematics_webinar_presentati on.pdf.